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Computational methods based on the solution of the lattice-Boltzmann equa-
tion have been demonstrated to be effective for modeling a variety of fluid flow
systems including direct simulation of particles suspended in fluid. Applications
to suspended particles, however, have been limited to cases where the gap width
between solid particles is much larger than the size of the lattice unit. The
present extension of the method removes this limitation and improves the
accuracy of the results even when two solid surfaces are near contact. With this
extension, the forces on two moving solid particles, suspended in a fluid and
almost in contact with each other, are calculated. Results are compared with
classical lubrication theory. The accuracy and robustness of this computational
method are demonstrated with several test problems.

KEY WORDS: Particle-particle and particle-wall interaction; lubrication force
between surfaces near contact.

1. INTRODUCTION

It is well known that transport of solid particles suspended in fluid occurs
in many physical and industrial processes. To analyze and understand the
transport of suspensions, the motion and dynamics of solid particles sus-
pended in fluid must be thoroughly studied. In the direct simulation of
suspensions using continuum models of two-phase flows, the fluid dynam-
ics is governed by the Navier–Stokes equations while the motion of the
solid particles is governed by the Newtonian dynamics equation. An alter-
native method to continuum mechanics is the solution of the lattice-
Boltzmann equation for the fluid phase. This is a robust and efficient



computational method for the analysis of solid particles suspended in
fluid. (1–9) By combining Newtonian dynamics of the solid particles with a
lattice-Boltzmann model of the fluid, the motion of the suspended particles
can be simulated efficiently and accurately. An obvious advantage of the
lattice-Boltzmann (LB) method is that the computer code can be easily
implemented on parallel processors because of the local nature of the time
evolution operator. Another advantage of this method is that the compu-
tational time is independent of the Reynolds number and weakly dependent
on the number of solid particles, although it is dependent on the size of the
computational domain. The present work is on the improvement of the
computational method for cases where two particles come to near contact.

The lattice-Boltzmann method is first applied to suspended particles
by Ladd. (1, 2) The algorithm constructed in Ladd’s model is flexible and
efficient. It requires fluid to cross the boundary of the suspended solid par-
ticle and occupy the entire domain. The solid-fluid boundary condition
introduced in this method is momentum conserved as long as the momen-
tum of the fluid inside and outside the solid particle are included. This
method is applied to spherical surfaces in close contact by including the
leading order lubrication force where the separation distance is closer than
about a lattice space. (10, 11) The limitation of this version of the LB method
is that it can only be used for solid particles with density larger than the
fluid density.

In an alternative approach by Aidun et al., (3, 4, 6) the fluid interior to
the solid particle is eliminated and the method is extended to any solid-to-
fluid density ratio. However, as in any discrete computational method, the
LB method in general is limited to the gap width between solid particles
larger than the size of the lattice unit. As the solid particles get too close to
each other, leaving no fluid node between the solid surfaces, the LB
method does not accurately calculate the hydrodynamic interaction
between the solid particles. In order to resolve the hydrodynamic force
between solid particles near contact, relatively large numbers of lattice
nodes need to be used in the computational domain. One approach to
resolve this difficulty is to amend the solid-fluid interaction calculation
with a model of lubrication force based on theoretical lubrication
approximation (10, 11) for a small gap between regular shaped objects. In
Section 2.6 we discuss a local link-by-link implementation of the lubrica-
tion force when the gap between particles becomes very small.

With the method by Aidun, Lu, and Ding (ALD), (6) as long as there
are at least two fluid lattice nodes in between solid surfaces near contact,
the hydrodynamic forces are computed correctly. In order to remove this
restriction and resolve the hydrodynamic interaction between particles
without the requirement of two or more lattice nodes in between the solid
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surfaces, ‘‘virtual nodes’’ are added to the solid boundaries. The only
influence of the virtual boundary nodes is to provide the means to calculate
the hydrodynamic forces, even when the separation between solid surfaces
is less than a lattice unit. By this simple amendment of the ALD method,
the ALD’ method is able to correctly calculate the interaction between
solid objects near contact. The accuracy of the simulation can be greatly
improved even though the computational domain consists of fewer lattice
nodes.

The remaining part of this paper is organized as follows. The ALD’
method is outlined in Section 2. It is demonstrated in Section 3 that this
method is robust with no adjustable parameters. In Section 4, the lubrica-
tion force for several different cases is computed with the ALD’ method
and the results are compared with lubrication theory demonstrating the
reliability of the present extension. Some concluding remarks are included
in Section 5.

2. THE ALD’ METHOD

2.1. Lattice-Boltzmann Equation

The state of the fluid at node x at time t is described by the distribu-
tion function fsi(x, t), which is calculated through the lattice-Boltzmann
equation: (12–15)

fsi(x+esi, t+1)=fsi(x, t) −
1
y

[fsi(x, t) − f (0)
si (x, t)], (1)

where y is the relaxation scale and esi is the velocity vector, pointing from
node x to the adjacent nodes in a square or cubic lattice structure for two-
dimensional or three-dimensional cases, respectively. The magnitude of esi

is determined by the first subscript, s, for the resting particles

|e0i |=c0=0, i=1,

for particles moving to off-diagonal nodes,

|e1i |=c1=1, ˛ i=1,..., 6 in three-dimension and
i=1,..., 4 in two-dimension,

and for particles moving to the diagonal nodes,

|e2i |=c2=`2 , ˛ i=1,..., 12 in three-dimension and
i=1,..., 4 in two-dimension.
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f (0)
si (x, t) is the equilibrium distribution function, defined as

f (0)
si (x, t)=r(x)[As+Bs(esi · u)+Cs(esi · u)2+Dsu2], (2)

where the density r and the continuum velocity vector u of the fluid are
defined as

r(x, t)=C
s, i

fsi(x, t) and u(x, t)=
1

r(x, t)
C
s, i

fsi(x, t) esi,

respectively.
The probability distribution function, fsi(x, t), updated by

fsi(x, t+1)=P0Cfsi(x, t), (3)

where the propagator, P0, and the collision operator, C, are defined as

P0fsi(x, t+) — fsi(x+esiŒ, t+) (4)

and

fsi(x, t+)=Cfsi(x, t) — fsi(x, t) −
1
y

[fsi(x, t) − f (0)
si (x, t)], (5)

respectively. Here, (siŒ) always means the link with direction opposite
to that of link (si), and t+ is the time immediately after the collision,
that is t+ − t ° 1 (recall the time step is set to unity). One step of lattice-
Boltzmann simulation is then divided into two successive operators. The
results of the collision operator are dependent on the choice of the equilib-
rium distribution function, which will be discussed in Section 2.2. The
propagator will change its form, depending on the boundary condition,
which will be considered in Section 2.4.

2.2. The Equilibrium Distribution Function

The coefficients in the equilibrium distribution functions are deter-
mined by conservation laws for mass, momentum, and kinetic energy.
These constrains in two-dimensional cases have turned out to be: (4, 14)

B0=0, C0=0,

A1=1
2 (1 − A0 − c2

s ), B1=1
3 , C1=1

2 , D1=−1
2 (1+D0),

A2=−1
4 (1 − A0 − 2c2

s ), B2= 1
12 , C2=1

8 , D2=1
8 (1+2D0).

(6)
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The simplest expressions (with a total of three zero coefficients) for the
9-bit equilibrium distribution function are obtained when c2

s =1/3, D0=0,
and A0=1/2:

A0=1
2 , B0=0, C0=0, D0=0,

A1= 1
12 , B1=1

3 , C1=1
2 , D1=−1

2 ,

A2= 1
24 , B2= 1

12 , C2=1
8 , D2=1

8 .

(7)

Other choices are also possible. Since

B1

B2
=

C1

C2
=

1
4

these coefficients can be determined by requiring

A1

A2
=

D1

D2
=

1
4

,

which gives the following coefficients: (14)

A0=4
9 , B0=0, C0=0, D0=−2

3 ,

A1=1
9 , B1=1

3 , C1=1
2 , D1=−1

6 ,

A2= 1
36 , B2= 1

12 , C2=1
8 , D2=− 1

24 .

(8)

This set of coefficients will be used in this paper, because it is in agreement
with the Boltzmann–Maxwell distribution function up to the order of u2. (16)

In three-dimensional cases, the following coefficients will be used in
this paper:

A0=1
3 , B0=0, C0=0, D0=−1

2 ,

A1= 1
18 , B1=1

6 , C1=1
4 , D1=− 1

12 ,

A2= 1
36 , B2= 1

12 , C2=1
8 , D2=− 1

24 .

(9)

When the scaling for time, length, and, consequently, velocity, are all
set to unity, the ‘‘kinematic viscosity’’ is given by n=(2y − 1)/6. (12) The
relation between the ‘‘kinematic viscosity’’ in the lattice scale and the phy-
sical fluid viscosity is explained in Section 3. The Mach number, Ma, is
given by the characteristic velocity defined in the lattice scale divided by cs.
In all cases, the characteristic velocity in the lattice scale is kept less than
0.1, giving a Mach number less than 0.173. As long as the velocity in the
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lattice scale is small enough, the compressible characteristic of the fluid
flow in the lattice scale is insignificant, and the method accurately simulates
incompressible flow in the continuum scale.

2.3. Real and Virtual Nodes

As indicated before, in the early applications of lattice-Boltzmann to
suspensions, (1, 2, 10, 11) fluid is required to occupy the entire domain, including
the solid particles. In that approach, the fluid inside and outside the solid
particle is physical fluid, that is, the total force and the total torque on the
solid particle are contributed not only by the fluid nodes outside the solid
particle but also the fluid nodes inside the solid particle. The particles
comprise a solid shell of given mass and inertia, filled with fluid of the
same mass density as the bulk fluid. As a result, the total mass density of
the particle can never be less than the fluid density, limiting this approach
to cases where the solid-to-fluid density ratio is greater than one.

In an alternative approach, with the ALD (3, 6) method, where solid
particles are treated as real solid objects with no interior fluid nodes, the
solid-to-fluid density ratio can be less than or greater than one. As the solid
particles move, the fluid domain changes; some fluid nodes may be covered
while new fluid nodes appear. The rules governing this process require
additional steps which are not required in the Shell method. The advan-
tages of both models can be combined by addition of ‘‘virtual nodes’’
inside the solid particle which contain ‘‘virtual fluid.’’ The virtual fluid is
characterized by having the same density as the real fluid. The nodes inside
the solid particle and adjacent to the solid boundary are referred to as the
‘‘virtual boundary nodes.’’ In contract to the Shell model, the nodes inside
the solid particle have no influence on the mass and momentum transfer
between the solid particle and the surrounding fluid. When fluid nodes
completely surround the particle, the momentum from the physical fluid
nodes is transferred to the solid particles, as in the ALD method. The
components of the distribution functions at the virtual nodes are updated
in every lattice-Boltzmann time step. The advantages of adding virtual
boundary nodes will be explained in the following sections.

A small impulse of force is applied to the solid particle as a node is
covered or uncovered. When a solid particle covers a physical node, the
transferred force and torque are given, respectively, by

F (c)(x, t0+1
2)=r(x, t0)[u(x, t0) − UŒ] (10)

and

T (c)(x, t0+1
2)=[x − X(t0)] × F (c)(x, t0+1

2), (11)
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where UŒ is the local velocity of the solid particle and X(t0) is the position
vector of the center of mass. The force and torque are assumed to be dis-
tributed through the time interval [t0, t0+1]. When a virtual fluid node is
uncovered due to the motion of a solid particle, the transferred force and
torque are given, respectively, by

F (c)(x, t0+1
2)=−r(x, t0)[u(x, t0) − UŒ]

and

T (c)(x, t0+1
2)=[x − X(t0)] × F (c)(x, t0+1

2).

It is important to note that these rules are Galilean invariant.
As the solid particles move, the total number of fluid nodes containing

fluid mass can slightly fluctuate. This fluctuation is insignificant in the
macroscopic level.

2.4. Solid-Fluid Boundary Condition

The simplest scheme to calculate the momentum transfer between fluid
and solid particle is the ‘‘link-bounce-back’’ boundary condition, where the
boundary is always assumed to be located at the middle of the boundary
links. Although more accurate boundary conditions can be implemented by
combining the ‘‘link-bounce-back’’ scheme with spatial interpolation of
first or second order (17) or by introducing a continuous parameter for the
fluid volume in each cell, (18) the simplest boundary condition is considered
here for the purpose of presenting the ALD’ method. The higher order
boundary rules can be easily implemented with this method.

For a stationary solid surface, the probability distribution function at
t+1 is given by

fsi(x, t+1)=Pn−s(0)fsi(x, t+) — ˛fsiŒ(x, t+), if (siŒ) is BL,
fsi(x+esiŒ, t+), otherwise,

(12)

where Pn−s(0) is the no-slip propagator for a stationary wall and BL refers
to the boundary link, that is, the link that connects the physical fluid node
to the virtual fluid node. The distribution function at the no-slip stationary
boundary node is given by

fsi(x, t+1)=Pn−s(0) Cfsi(x, t). (13)
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For a moving solid surface, however, the distribution function is given
by

fsi(x, t+1)=Pn−s(ub) fsi(x, t+) — ˛fsiŒ(x, t+)+2rBsub · esi, if (siŒ) is BL,
fsi(x+esiŒ, t+), otherwise.

(14)

where ub is the velocity of the solid object at the midpoint of the boundary
link and r is the density at node x. In this paper, the value of r at time t is
used in Eq. (14). One can also use r at time t+1 without any significant
change in the result.

During collision, the momentum transferred to the solid particle is
given by

dpsi=2esiŒ[fsi(x, t+1) − rBsubesi]

if the fluid node is a physical one. If the node interacting with the solid
object is a virtual fluid node inside the solid object, the solid object will not
gain any momentum during collision, and therefore, dpsi=0.

2.5. Virtual Nodes when Two Particles Are Near Contact

When the separation between two suspended solid particles becomes
smaller than a unit lattice dimension, two different situations, as shown in
Fig. 1, are possible. In case (a) of Fig. 1, which is an ‘‘exceptional’’ case
(nongeneric), at least one layer of fluid nodes always exists in the gap as the
two particles approach each other. However, this case rarely occurs in the
simulations. In most cases, there is no fluid node in the gap when the par-
ticle separation is smaller than the lattice size, that is, case (b). In this case,

(a) At least one layer of 
fluid nodes in the gap

(b) No fluid nodes
in the gap

Fig. 1. When the separation between two particles is less than a lattice unit, the minimum
gap may contain (a) one layer of fluid nodes or (b) no fluid nodes. Results with these two
lattice arrangements, referred to as cases (a) and (b), are presented in some of the following
figures.
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the operator defined in Eq. (14) is not applicable, and the rule for calculat-
ing the distribution function fsi(x, t+1) must be modified because the two
nodes on the separation link are now covered by the solid particles and no
longer contain real fluid. In ALD’ method, both nodes become virtual
nodes.

To explain this case in more detail, let’s assume that there are two
solid particles, say, I and J, as shown in Fig. 2. The initial point of link esi

is node x, just inside the solid boundary of particle I, while the final point
of link esi is node y, just inside the solid boundary of particle J. The rule
for calculating the interaction between the virtual node at the solid surface
and its neighboring fluid nodes must be modified. Both nodes x and y are
considered to be physical fluid nodes. When the interaction between node x
and particle I is being considered, the distribution function at node x at
time t+1 on link esi is given by

fsi(x, t+1)=Pn−s(ub) fsi(x, t+)=fsiŒ(x, t+)+2rBsub · esi, (15)

and ub is the velocity of solid particle I at x+1
2 esi. Consequently, the

momentum transfer to solid particle I is given by

dpsi=2esiŒ[fsi(x, t+1) − rBsubesi].

The same rule is used to calculate the interaction between node y and
particle J.

Since node y is considered as a fluid node, as if it was moved outside
particle J, node yŒ should be considered as a boundary node, with distri-
bution function in direction esi updated by

fsi(yŒ, t+1)=Pn−s(uŒb) fsi(yŒ, t+)=fsiŒ(yŒ, t+)+2rBsuŒb · esi.

There is no momentum transformed in this collision. The same rule is used
to update the distribution function at node xŒ.

particle I particle J

x I x y y I

eσi

.

Fig. 2. Notation used in the calculation of the interaction between two solid particles near
contact. xŒ, x, y, and yŒ are virtual fluid nodes. Node x (y) are considered as fluid nodes in
calculation of the interaction between particle I (J) and fluid in the gap area.

Extension of the Lattice-Boltzmann Method 693



For case (a) in Fig. 1, there is at least one layer of fluid nodes in the
gap. The virtual boundary nodes in the solid particles are also considered
as fluid nodes, and the same rules for case (b) are used to update the dis-
tribution function and to calculate the momentum transfer.

When a solid particle is very close to a solid wall, the interaction
between the wall and the particle is treated in a similar manner.

With the momentum transferred to the solid particle through each
link, the impulse force exerted on the particle is given by

F (b)
si (x, t0+1

2)=dpsi/ Dt. (16)

And the torque with respect to the center of mass, X, is given by

T (b)
si (x, t0+1

2)=[x − X(t0)] × F (b)
si (x, t0+1

2). (17)

2.6. Lubrication Forces Included in the ALD’ Method

In many particulate flow problems, the lubrication forces between two
particles significantly influence the bulk flow behavior. The numerical
procedure outlined above cannot accurately capture the force separating
two particles when the particle separation becomes much smaller than the
lattice dimension. To further resolve the forces separating the two particles
about to collide, one can use the results from linearized lubrication
approximation and include the force in analytical form. The procedure
used in the ALD’ method to capture the singular lubrication forces when
the gap, E, between two solid surfaces tends to zero is outlined in the
following paragraphs. Note, however, that in direct simulation of particle
collision a minimum gap, comparable to the solid surface roughness,
should be included in the model to capture actual particle collision, as it
occurs with real particles.

In this model, the lubrication forces are included using links connect-
ing two virtual boundary nodes from two surfaces near contact (Fig. 2),
defined as ‘‘bridge’’ links. In the case presented by Fig. 1(a), a link between
a virtual boundary node and the adjacent fluid node is referred to as a
‘‘half-bridge’’ link. A ‘‘pair of half-bridge’’ links refers to two half-bridge
links along a straight line that share a single fluid node between them.

The idea here is to determine an element of force, df, for each bridge
link and each pair of half-bridge links which accurately account for the
lubrication force. This element of force applies on the linked surface ele-
ments. The direction of the element of force should be along the bridge link
or the pair of half-bridge links, while its magnitude should be such that the
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a

b

r

 δ

R2

R1

ε

Fig. 3. Notations used in calculating the lubrication force between two surface elements.

summation over every bridge link and every pair of half-bridge links pro-
vides the correct lubrication force.

Let’s consider the element of force, dfŒ, given by

dfŒ=
3
2

nrU
ld2 , (18)

where d=d(r) is the surface separation, as defined in Fig. 3, and l depends
on the surface curvature. In the following paragraphs, we will first demon-
strate that this relation provides results in agreement with analytical results
for two spheres based on linearized lubrication theory when two surface
elements are joined by a single off-diagonal link along the direction parallel
to the centerline. We will then generalize this relation to cases where more
than one link may exist between surface elements.

If the two particles are spheres, the surface curvature, l, is given by

l=
1
2
1 1

R1
+

1
R2

2 ,

where R1 and R2 are the radii of curvature of the two surface elements. The
summation of the elements of force over every surface element, given by

F=C dfŒ=F
3
2

nrU
ld2 ds, (19)

provides the correct lubrication force between two spheres (ds represents
an infinitesimal surface element). From simple geometric considerations, if
R1 ± a

r2=(2R1 − a) a 4 2R1a, (20)
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and if R2 ± b

r2=(2R2 − b) b 4 2R2b, (21)

hence

d=E+a+b=E+r2l. (22)

Then

ds=2pr dr=
p

l
dd, (23)

and subsequently, the summation (19) becomes

F=−
3p

2l2

nrU
E

(24)

which is the same as the relation given by Cox (1974) for two spheres.
As mentioned above, Eq. (18) only applies to cases where the two

surface elements are connected by a single off-diagonal link. Considering
that the lubrication force becomes important when the separation between
two particles is much less than the lattice dimension, the general formula-
tion should apply to cases where more than one bridge link exists between
two surface elements. Therefore, the element of force, dfŒ, must be
modified by a weighing factor, q, to include the effect of multiple links. The
general form of the element of force, df, is therefore given by

df=q dfŒ=
3
2

nrU
ld2 q, (25)

where the weighing factor q depends on the number and configuration of
the bridge and half-bridge links. One can use an averaged weighing factor
defined by

q̄=
; q dfŒ

; dfŒ
.

In our simulation we have found that the value of q̄ 4 0.6.
The force element, df, along the direction of a bridge link or a pair of

half-bridge links, has a significant contribution to the lubrication force only
when d is very small. If the value of d is larger than the length of the link,
the contribution of the ‘‘lubrication’’ component, df, will be insignificant.
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Also, since a link can be in diagonal or off-diagonal directions, it is neces-
sary to keep the results isotropic and independent of the lattice structure.
Therefore, the elements of lubrication force along diagonal links (s=2)
should be scaled as one-half of the force along off-diagonal links (s=1).
This is consistent with the equilibrium distribution function (9), where the
coefficients of group 2 in the diagonal direction are one-half of the corre-
sponding coefficients of group 1 in the off-diagonal direction. With the
above derivation, the element of lubrication force, in general form, is given
by

df=˛ 3q̄
2c2

sl
nrU 1 1

d2 −
1
c2

s

2 , if d < cs

0, if d \ cs.
(26)

The force and the torque on the solid particle along this link (si), F (d)

and T (d), are given by

F (d)(x, t)=df
esi

cs

,

and

T (d)(x, t)=[x − X(t)] × F (d)(x, t),

respectively. The total lubrication force and its torque on a solid particle is
then given by

F lub(t)=C
BS

F (d)(x, t)

and

T lub(t)=C
BS

T (d)(x, t),

respectively, where BS stands for the bridge links and pair of half-bridge
links. Simulation results show that with df from Eq. (26) the summation
over two spherical surfaces is in agreement with theoretical prediction. In
general, this expression applies to smooth surfaces where the spatial varia-
tion of local curvatures is not very large.
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Accordingly, the force element, df, for two-dimensional cases, is given
by

df=˛ 3

c4
s `l

nrU 1 1
d3/2 −

1
c3/2

s

2 , if d < cs

0, if d \ cs.

(27)

In the following sections the accuracy and validity of the method
outlined above will be presented.

2.7. Equations Governing the Motion of a Solid Particle Suspended

in Fluid

The total force and torque on the solid particle during [t0, t0+1],
except for the lubrication force, are given by

F(t0+1
2)=C

BN
C
si

F (b)
si (x+1

2 esiŒ, t0+1
2)+C

CN
F (c)(x, t0+1

2) (28)

and

T(t0+1
2)=C

BN
C
si

T (b)
si (x+1

2 esiŒ, t0+1
2)+C

CN
T (c)(x, t0+1

2), (29)

respectively, where BN stands for the boundary nodes and CN for covered
and uncovered nodes due to the motion of the particle.

The total force and torque, excluding the lubrication force, at time t0,
averaged over time interval [t0 − 1, t0+1], are given by

F(t0)=1
2[F(t0+1

2)+F(t0 − 1
2)] (30)

and

T(t0)=1
2[T(t0+1

2)+T(t0 − 1
2)]. (31)

With the net force and torque from the above equations, the motion of
the solid particle from t=t0 through t=t0+1 is determined by solving
Newton’s equations given by

M
dU(t)

dt
=F(t0)+F lub(t), (32)

698 Ding and Aidun



for translation, and

I ·
dW(t)

dt
+W(t) × [I · W(t)]=T(t0)+T lub(t), (33)

for rotation of the solid particle. Here M is the mass of the suspended par-
ticle, I is the inertial tensor, and W is the angular velocity. In this simula-
tion, these equations are solved using a fourth-order accurate Runge–Kutta
integration procedure to obtain the complete motion of the suspended solid
particles in the fluid. Note that the variation of the lubrication component
of force and torque per lattice time unit increases as the surface separation
decreases. In order to accurately resolve the lubrication force, the lattice
time unit is divided accordingly into substeps in the integration procedure.

3. PARAMETERS IN THE LATTICE-BOLTZMANN EQUATION

The purpose of this section is to demonstrate that there is no adjust-
able parameter in the lattice-Boltzmann method. There are three numerical
parameters, y, Dx, and Dt, in the lattice-Boltzmann equation (1), where Dx
and Dt are the length of the lattice unit and the magnitude of the time step,
respectively. As in any simulation, Dx and Dt must be sufficiently smaller
than the characteristic length scale and the characteristic time scale of the
system. Since the surface of the particle is projected on a discrete computa-
tion lattice, the boundary is always assumed to be at the midpoint of the
boundary nodes when the interaction between solid particle and fluid is
considered. (1, 2, 6) When the size of the solid particle relative to Dx increases,
the surface is defined more precisely. The lattice-Boltzmann method is
accurate only when the grid is very fine, or, in other words, the particle
surface is projected onto a large number of lattice nodes.

The flow problem should be defined by the nondimensional param-
eters. For example, problems concerned with incompressible flow past
blunt bodies are defined based on the Reynolds number, Re=ud/n, where
u is the free stream velocity scale, d is the characteristic length of the blunt
body, and n is the kinematic viscosity. For particles in shear flow, the
defining parameter is the particle Reynolds number based on the rate of
shear, ċ, that is Re=ċd2/n. When gravity, g, is considered, then the Froude
number, defined as Fr=u2/gd, becomes the second parameter in the
problem.

As the first example, consider the flow over a blunt body. In this
example, the physical variables, fluid properties and nondimensional
parameters based on the physical quantities, are defined by subscript, s,
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where the variable in lattice scale has no subscript. Then Us and ds are the
characteristic velocity and length, respectively; and ns is the kinematic vis-
cosity. Reynolds number is defined as Res=Usds/ns. The Reynolds number
based on the corresponding parameters in the lattice scale is defined as
Re=Ud/n. The parameters u, d, and n in the lattice scale should be set
such that Res=Re. Therefore, Usds/ns=Ud/n, or

n=ns
1 U

Us

21 d
ds

2 ,

where

d=ds/Dx,

and

U=Us(Dt/Dx).

Since the Mach number has to be small for incompressible flow, the
characteristic lattice velocity scale, U, is usually set at about 0.1 or less
with corresponding Mach number less than (0.1/ `1/3=) 0.173. For a
problem where Re=10, for example, then d/n=100; and if the character-
istic length, for example the diameter of the particle, is discretized by
20 lattice units, then d=20 and n=0.2. The parameter that needs to be
specified in the lattice-Boltzmann equation (i.e., Eq. (1)) is the relaxation
time constant y=(6n+1)/2. Therefore, in this example, y=2.2/2=1.1.

As a second example, closer to the cases considered in the next section,
consider a circular cylinder moving with a translational velocity us=
0.0024 cm/sec in a channel filled with fluid. The radius of the cylinder is
Rs=1.2 cm. The fluid density is rs=1 g/cm3, and viscosity is ns=
0.01 cm2/sec. The width of the channel is Ls=4Rs, and the length is 2Ls.
No-slip boundary condition is used for the channel walls, and periodic
boundary condition is used for the inlet and outlet. Reynolds number in
this case is Res=us(2Rs)/ns=0.576. The Reynolds number based on the
lattice-Boltzmann computational parameters is given by

Re=u(2R)/n.

As long as Re=Res, the lattice-Boltzmann simulation will accurately
compute the flow field and the particle dynamics. If Dx=0.1 cm is chosen,
the radius of the cylinder is R=12. When n=1/6 (i.e., y=1), the time
increment, Dt, is 1/6 sec. The velocity, u, of the cylinder is 0.004, much
smaller than the speed of sound in the lattice-Boltzmann scale (i.e.,
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cs=`1/3). Lattice-Boltzmann simulation results show that the drag
coefficient,

f=Fs/usnsrs=F/unr=12.4.

Hence, the force on the cylinder is

Fs=fusnsrs=2.98 × 10−4 dyn/cm.

Different values of Dx and n have been chosen in this simulation.
Results are summarized in Fig. 4(a). Larger value of R means smaller value
of Dx. When R is sufficiently large, different values of n result in the
same drag coefficient, denoted by fg. On the other hand, if R < 8 in this
example, Dx is too large, and the simulation results may apparently deviate
from fg. This is expected because, like any other numerical method, there
must be sufficient number of lattice nodes upon which the projected flow
field can be well resolved, and consequently the results become independent
of the relaxation parameter.

As an example of a three-dimensional case, a sphere moving with a
constant speed in a channel filled with fluid is considered. The simulation
results, summarized in Fig. 4(b), show that the drag coefficient is indepen-
dent of the different choices of n when the radius, R, of the sphere is
sufficiently large. These examples clearly demonstrate that there is no
adjustable parameter in the lattice-Boltzmann method. To obtain reliable
results in the simulation, the increments Dx and Dt must be sufficiently
small—similar to any other computational method.

4. HYDRODYNAMIC INTERACTIONS

To evaluate the accuracy and effectiveness of the current computatio-
nal method, the hydrodynamic interactions between two solid objects in
relative motion and in close contact are discussed in this section.

Four different cases are being considered in this section. Two spheres
approaching each other and a sphere approaching a flat wall are the three-
dimensional simulations. For two-dimensional cases, two circular cylinders
approaching each other and a circular cylinder approaching a flat wall are
considered.

4.1. Two Spheres in a Three-Dimensional Channel

In this section we consider two spheres in a three-dimensional channel
approaching each other with a constant velocity.
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Fig. 4. The drag force on a moving particle in a channel filled with fluid. (a) A circular
cylinder of radius R in a two-dimensional channel 2L long and L wide, where L=4R. fg, the
drag coefficient for R=48, is independent of y. (b) A sphere of radius R in a three-dimen-
sional channel 2L × L × L, where L=4R. fg, the drag coefficient for R=18, showing that the
results are independent of y.

The radius of the spheres are R1 and R2, and the center-to-center dis-
tance between the two spheres is d. The separation value, s, between the
two spheres is given by

s=El,

where

E=d − R1 − R2,

and

l=
1
2
1 1

R1
+

1
R2

2 .

For two identical spheres, where R=R1=R2,

l=
1
R

, and s=
d
R

− 2.

The leading order force, f, based on lubrication approximation between
these two spheres in three-dimensional space is given by refs. 19 and 20:

f
2rnU/l

=
3p

4s
+Cw, (34)
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where r and n are the fluid density and viscosity, respectively, U is the
relative velocity of two particles, and Cw is a constant depending on the
wall effect. If the channel is infinitely large, then Cw=0.

The computations are based on the ALD’ method outlined above. The
flow field and the lubrication force between two spheres moving toward
each other with a constant speed are computed in a rectangular channel.
The size of the rectangular channel is 64 × 32 × 32, and the radius of the
spheres are R=4.25. With four different sets of values for n and U, the
lubrication force at Reynolds number Re=0.57 is computed and results
are presented in Fig. 5. The lubrication force from Eq. (34) is also plotted
as a solid line in the same figure for comparison. The x-axis, expressing the
width of the gap between two spheres, is scaled by l=1/R. The gap in the
unit of lattice spacing is also shown at the upper edge of the figure. It is
clear that the improved ALD’ method, presented above, significantly
extends the range of application and the accuracy for near contact par-
ticles.

The simulation results are relatively in good agreement with the
theoretical prediction when E \ 1. Furthermore, the general divergence
behavior of the lubrication forces near contact is reproduced for particle
separations of as small as 0.1 lattice spacing and beyond. Notice that in
simulations of multiparticle systems, there is usually no fluid node on the
line of their centers when two particles are almost in contact; therefore,
case (b) of Fig. 1 is more probable than case (a). Considering that the ALD
method fails to apply when E [ 2, it is clear that the improved ALD’
method, presented above, significantly extends the range of application and
the accuracy for near contact particles.
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Fig. 5. Normal force in interaction between two identical spheres with radius R=4.25 near
contact. The system size is 64 × 32 × 32. The solid line is obtained from lubrication theory.
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4.2. A Sphere Approaching a Flat Wall

Significant interaction between particles and flat boundaries occurs in
confined channels. To examine the accuracy of the ALD’ method for this
case, in this section the ALD’ method is applied to a sphere approaching a
flat wall.

In this simulation the particle is moving toward a flat wall with a con-
stant velocity, U=0.02. Keeping Reynolds number fixed at Re=1.044,
three cases with values of radius and viscosity given by (R, n)=(3.2625, 1/8),
(4.35, 1/6), and (6.525, 1/4), are considered. The results show very good
agreement with theoretical prediction Eq. (34), presented in Fig. 6 as a
solid line.

The requirement for the minimum separation between two solid sur-
faces, either particles or particle and a wall, has been considerably reduced
with the ALD’ method. In the case considered here, the normalized force is
accurately calculated for the particle almost in contact with the wall even
up to normalized force at 400 where the separation distance is much
smaller than a single lattice unit.

4.3. Two Circular Cylinders in a Two-Dimensional Channel

Results of the two-dimensional simulations for circular cylinders
approaching each other corresponding to cases (a) and (b) of Fig. 1 are
presented in Figs. 7 and 8, respectively. The computational domain is
2L × L, and the radius of the circular cylinder is 0.2875L. The two particles
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Fig. 6. Normal force on a sphere approaching a flat wall with constant velocity U=0.02.
The solid line is obtained through classical lubrication theory. Reynolds number here is
Re=1.044.
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Fig. 7. Normal force between two identical circular cylinders in 2-D domain, approaching
each other with speeds ± U/2= ± 0.01, respectively. There is always at least one layer of fluid
nodes between the two particles. The system size is 2L × L, and the radius of the cylinders is
R=0.2875L. The gap in the unit of lattice spacing when R=9.2 is also shown at the upper
edge of the figure. Note the difference in definition of the nondimensional force between the
two-dimensional case, presented in this and following two figures, compared to the three-
dimensional case presented in Fig. 5 and 6.
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Fig. 8. Normal force between two identical circular cylinders in 2-D domain, approaching
each other with speeds ± U/2= ± 0.01, respectively. No fluid nodes between the solid par-
ticles when they are very close to each other. The system size is 2L × L, and the radius of the
cylinders is R=0.2875L. The gap in the unit of lattice spacing when R=9.2 is also shown at
the upper edge of the figure.
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are approaching each other with constant velocities ± U/2= ± 0.01,
respectively. With L=32 and n=1/8, the simulation has already provided
reliable results for the particle separation as small as E 4 0.1.

The accuracy of the simulation is examined by comparing with a
‘‘double-size calculation,’’ in which both Dx and Dt are reduced by a factor
2, while both Mach number and Reynolds number are kept unchanged,
and consequently, the value of viscosity, n, is doubled. A series of succes-
sive double-size calculations are carried out up to L=1024. The simulation
results for various grid sizes of L=32 as well as L=64 and 128 are
compared with the very fine grid size of L=1024 lattice units. This com-
parison demonstrates the advantage of the present method where a rela-
tively coarse grid of 32 to 128 cells provides results that are nearly as
accurate as the very fine grid size of 1024 lattice units.

4.4. A Circular Cylinder and a Flat Wall

Results for the lubrication force between a circular cylinder and a flat
wall in a two-dimensional space are shown in Fig. 9. The system size is
L × L with L=64 and 128, respectively. A circular cylinder with radius
R=0.14357L is moving toward the flat wall with constant velocity
U=0.01. With the smallest system, L=64, the viscosity is n=1/8. The
other three larger systems are designed for a series of successive ‘‘double-
size’’ calculations. The results obtained by simulation with smaller systems
show nearly perfect agreement with the finest lattice, that is L=1024,
presented with a solid line in Fig. 9.
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Fig. 9. Normal force on a circular cylinder approaching a flat wall with constant velocity
U=0.01. The solid line is calculated with a very fine lattice (R=147.2, L × L=1024 × 1024),
which is assumed to provide accurate lubrication force when s \ 0.01. The results with coarser
lattice are shown by +: R=9.2, L × L=64 × 64 and n: R=18.4, L × L=128 × 128, respec-
tively.
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5. CONCLUDING REMARKS

The purpose of the present work is to extend the ALD method to
simulation of suspended particles near contact, without the requirement of
having two or more lattice nodes in between the solid particles. Consid-
ering the significant importance of the lubrication force in the dynamics of
suspended particles in fluid, the necessity of the extension of the ALD
method is obvious. The ALD’ method, described in Section 2, is able to
correctly calculate the interaction between solid objects near contact. The
accuracy of the simulation when two surfaces are near contact is greatly
improved eventhough the computational domain consists of fewer lattice
nodes.

In order to get more satisfactory simulation results, the following ways
of modification of this method may be considered. The collision operator
can be replaced by a generalized one provided by Lallemand and Luo. (21)

This may provide a more flexible model and in some cases may provide
more accurate and stable results. Our method can be simply extended by
adding higher-order boundary rules. (17, 18) The model provided by Heelmels
et al. (22) is a modified Shell model where it accurately conserves mass and
momentum.
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